

Spatio-temporal influence of ENSO on terrestrial water storage change in the Yangtze River basin

<u>Taoyong Jin¹</u>, Zhongwei Jin¹, Jiancheng Li¹, Zuansi Cai²

 ¹ School of Geodesy and Geomatics, Wuhan University
² School of Engineering and the Built Environment, Edinburgh Napier University

July 26, 2018

Contents

» Motivations

- » Data and Methods
- » Results
- » Discuss and Conclusions

Motivations

» The Yangtze River Basin (YRB)

- the longest river in China, with a total length of 6300km
- originates in the Qinghai-Tibet Plateau, terminates at the East China Sea
- mainly controlled by a subtropical and temperate monsoon

Motivations

» The Yangtze River Basin (YRB)

- 3 reaches and sub-basins
- 8 hydrological systems

Motivations

» The extreme weather events in YRB

2006 Chongqing

2011 Poyang Lake

2010 Wenchuan

2016 Wuhan

- » How does the total water storage change in YRB
- » How about the relations between TWSC and ENSO
- » How does the ENSO influence TWSC in YRB

Data and Methods

» Data used

		T 7	Resolut	Resolution		
Data type	Data sources	Version	Spatial	Temporal	Span	
ET	GLEAM	V3.0b	0.5°×0.5°	daily	2003.1~2017.6	
TWSC	GRACE CSR	RL05	-	monthly	2002.7~2017.6	
	GRCTellus	CSR	1°×1°	monthly	2002.7~2017.6	
Land surface model	GLDAS_Noah	V2.1	1°×1°	monthly	2002.7~2017.6	
River discharge	Chenglingji	-	_	daily	2002.7~2017.6	
	Datong	-	-	daily	2002.7~2017.6	

Data and Methods

» Terrestrial water storage change (TWSC) from GRACE

- degree 1 and C20 replaced
- fan filter with 250km

ear

- decorrelation filter from Swenson
- scale factors by Landerer

daily	2002.7~2017.

daily

6

2002.7~2017.6

» The missing monthly data interpolation

Data and Methods

» De-trended, de-seasoned monthly TWSC time series

- use SSA method to remove the non-linear trend
- use LSE method to remove the seasonal cycles

Results

- » The relations between TWSA and ENSO
 - MEI is selected to indicate the ENSO index
 - 13-month moving-average filter applied
 - different scales
 - Basin scale (the whole YRB)
 - Sub-basin scale (3 sub-basins or 11 sub-basins)
 - $1^{\circ} \times 1^{\circ}$ grid scale

Results

» The relations between TWSA and ENSO

- Basin scale
 - R is 0.29
 - peak R is 0.53, with 6-month time lag

- FFT spectrum analysis

MEI	4	(1)0.15	(3) 0.35	(2)0.28	(4) 0.52	UNIVERS
Results	4	(1) 0.15	30.35	20.28	(4) 0.52	

» The relations between TWSA and ENSO

- Sub-basin scale
 - upper, middle and lower basins

Correlation with ENSO

Sub-basins	Correlation coefficient	Cross-correlation peak value	ENSO-TWSA time lag	Correlation test
Upper YRB	0.29	0.51	8 months	Passed
Middle YRB	0.33	0.57	6 months	Passed
Lower YRB	0.28	0.58	6 months	Passed

Results

• Sub-basin scale

- 11 hydrological systems

	Sub-basins	Correlation coefficient	Cross-correlation peak value	ENSO-TWSA time lag	Correlation test
	(1) Taihu Lake	0.32	0.65	5 months	Passed
lowe	(2) The lower reaches of the Yangtze River	0.31	0.57	5 months	Passed
	(3) Poyang Lake	0.51	0.61	6 months	Passed
midd	(4) The middle reaches of the Yangtze River	0.43	0.63	6 months	Passed
	(5) Dongting Lake	0.41	0.57	8 months	Passed
	(6) Hanjiang River	-0.12	0.20	9 months	Failed
uppe	(7) The upper reaches of the Yangtze River	0.11	0.42	10 months	Passed
	(8) Wujiang River	0.39	0.55	8 months	Passed
	(9) Jialing River	-0.13	0.16	9 months	Failed
	(10) Mintuo River	-0.02	0.31	10 months	Passed
	(11) Jinsha River	-0.11	0.32	11 months	Passed

From downstream to upstream

- peak R decrease
- time lag increase

Results

water systems

hydrological stations

boundary of 11 sub-basins

upper basin

middle basin

lower basin

» The relations between TWSA and ENSO

• 1°×1° grid analysis

Discussions	Occurrence time	Location	
(1)Drought	Summer of 2006	Upper YRB	

» The lower of the between For SO and Mipper Reinly

- the Jialing River, the Hanjiang River Mid-lower YRB mainly
- part of Mintuo River and Jinsha River

Mid-lower YRB

• Indian Ocean Dipole (Dipole Mode Index)

Correlation between TWSA and IOD

YRB and its sub- basins	Correlation coefficient	Cross-correlation peak value	IOD-TWSA time lag	Correlation test
The YRB	-0.38	-0.41 0.53	2 months	Passed
The upper YRB	-0.47	-0.51 0.51	2 months	Passed
The middle YRB	-0.15	-0.19 0.57	2 months	Failed
The lower YRB	-0.13	-0.17 0.58	2 months	Failed
		ENSC		

	1	8	
Discussions	.38 -0.41	2 months	Passed
The upper YRB -(.47 -0.51	2 months	Passed

- » Therefore the between ENSO and supper YFR-B
 - the bialing River, the Hanjiang River 2 months
 - part of Mintuo River and Jinsha River

Correlation between TWSA and IOD in the upper YRB

Failed

Sub-basins	CorrelationCross-correlationcoefficientpeak value		IOD-TWSA time lag	Correlation test	
(6) Hanjiang River	-0.23	-0.32	0.20	2 months	Passed
(7) The upper reaches of the Yangtze River	-0.44	-0.50	0.42	2 months	Passed
(8) Wujiang River	-0.37	-0.41	0.55	2 months	Passed
(9) Jialing River	-0.39	-0.43	0.16	2 months	Passed
(10) Mintuo River	-0.59	-0.67	0.31	2 months	Passed
(11) Jinsha River	-0.42	-0.47	0.32	2 months	Passed
		F	NSO		

Discussions

» The links between ENSO and TWSA

- water balance equation: d(TWSC)/dt = P ET R
- same processing to P, ET and R with TWSA

YRB and its sub- basins	Hy dat	droclimatic a anomalies	Correlation coefficient	Cross-correlation peak value	Time lag	Correlation test
		Р	0.42	0.54	5 months	Passed
The YRB		R	0.04	0.31	6 months	Passed
		ET	-0.02	-0.11	4 months	Failed
		Р	0.18	0.30	7 months	Passed
The upper YRB	R	-0.10	0.19	8 months	Failed	
		ET	-0.11	-0.12	3 months	Failed
The middle YRB		Р	0.47	0.58	5 months	Passed
		R	0.24	0.43	6 months	Passed
		ET	0.06	-0.08	7 months	Failed
		Р	0.37	0.40	5 months	Passed
The lower YRB		R	0.04	0.31	6 months	Passed
YKB		ET	-0.01	-0.07	5 months	Failed

Correlations with ENSO

		Р	0.47	0.58	5 months	Passed
Γ	DISCIUSSI YRB	ons	0.24	0.43	6 months	Passed
		ET	0.06	-0.08	7 months	Failed
>>	The links	between	ENSO	and T _{0.40} WSA	5 months	Passed
	• weater ba	ilance equa	ation: $d($	TWSC)/dt = P -	-ET - R	Passed
	• same pr	ocessing to	$P, E' \Gamma$ at	nd R with TV	VSA 5 months	Failed

Summary of time lags relations

YRB and its sub-basins	ENSO- TWSA	ENSO- precipitation	ENSO- runoff	Precipitation- TWSA	Runoff- TWSA
The YRB	6 months	5 months	6 months	1 month	0 months
The upper YRB	8 months	7 months	8 months	1 month	0 months
The middle YRB	6 months	5 months	6 months	1 month	0 months
The lower YRB	6 months	5 months	6 months	1 month	0 months

Discussions

» Possible links between ENSO and extreme weather

• four typical extreme weather events

Type of the extreme weather event		Occurrence time	Location	
①Drought		Summer of 2006	Upper YRB	
②Flood		Summer of 2010	Mid-lower YRB mainly	
③Drought		Summer of 2011	Mid-lower YRB mainly	
④Flood		Summer of 2016	Mid-lower YRB	
YRB and its sub- basins	Correlation coefficient	Cross-correlation peak value	IOD-TWSA time lag	Correlation test
The YRB	-0.38	-0.41	2 months	Passed

Discussions

» Possible links between ENSO and extreme weather

- four typical extreme weather events
- time lags and 13-month moving-average filter are applied on MEI (MEI^t)

Correlation between TWSA and MEIt

Conclusions

- » ENSO has a significant influence on the TWSA in the YRB and its sub-basins but has time lags
- » The influence of ENSO on TWSA decreases and the time lags increase from east to west and south to north in the YRB
- » The precipitation and runoff changes, through the monsoon circulation changes, are found to be affected by ENSO, and explaining the influence of ENSO on TWSA
- » The sub-basins in the upper YRB and the northwest corner of the middle YRB that are not significantly affected by ENSO have clear correlation with IOD

Thank you!