

European Gravity Service for Improved Emergency Management

Validation of the EGSIEM GRACE gravity fields using GNSS and OBP records

Qiang Chen¹, Lea Poropat², Matthias Weigelt³, Henryk Dobslaw², Tonie van Dam¹

¹Geophysics Laboratory, University of Luxembourg, Esch-sur-Alzette, Luxembourg ²GFZ German Research Center for Geoscience, Potsdam, Germany ³Institute of Geodesy, Leibniz Universität Hannover, Hannover, Germany

The second DAAD TN workshop, 24-28 July 2018, Luxebourg

Motivation

Validation to increase our confidence in the delivered gravity products!

Validation of

- the official EGSIEM two-year combined monthly gravity solution as well as solutions from individual analysis centers (ACs)
- the long-term EGSIEM combined monthly solution
- the EGSIEM Level 3 monthly products
- the EGSIEM daily gravity products as well as NRT fields
- External datasets: GNSS time series and in-situ ocean bottom pressure (OBP) records

The second DAAD TN workshop, 24-28 July 2018, Luxembourg

Concept of Validation using GNSS

- GNSS observed vertical displacements
 - Monthly averaged reference frame data (EGSIEM)
 - Monthly averaged ITRF2014 time series (IGN, France)
 - Monthly averaged JPL GNSS time series (Public available)

• GRACE-derived vertical displacements

$$u_{r}(\theta_{P}, \lambda_{P}) = R \sum_{n=0}^{\infty} \frac{h'_{n}}{1 + k'_{n}} \sum_{m=0}^{n} \tilde{P}_{nm}(\cos \theta_{P}) \cdot (\Delta C_{nm} \cos(m\lambda_{P}) + \Delta S_{nm} \sin(m\lambda_{P}))$$

- R: Earth's radius
- h'_n, k'_n : loading Love numbers
- \tilde{P}_{nm} : normalized Legendre functions
- Δ*C*_{nm}, Δ*S*_{nm}: gravity spherical harmonic coefficients from GRACE

The second DAAD TN workshop, 24-28 July 2018, Luxembourg

Metrics

- WRMS reduction and its variants
 - Degree WRMS reduction
 - Accumulative degree WRMS reduction

Validation of the official EGSIEM two-year combined monthly solution using GNSS

The second DAAD TN workshop, 24-28 July 2018, Luxembourg

Post-processing monthly gravity fields

- Monthly gravity fields of 2006&2007
 - Official EGSIEM combined solution at the normal equation level
 - Products from four individual ACs (AIUB, GFZ, GRGS, ITSG)
 - Products from three official GRACE ACs (GFZ RL05a, CSR RL05, JPL RL05.1)
- Standard processing steps
 - Replacing C₂₀ from SLR (Cheng et al., 2011)
 - Restoring degree-1 from SLR (Sośnica et al., 2015)
 - Adding back AOD1B GAC RL05
 - Filtering with a Gaussian filter 500 km
 - Deriving displacements at GNSS stations
 - Removing the mean and trend

Meyer U., Jean Y., Jäggi A. Combination of GRACE monthly gravity fields on normal equation level. In preparation

- Mean degree WRMS reduction (top)
 - higher WRMS reductions at low SH degrees
 - abnormal C₂₁ and S₂₁ terms of EGSIEM-GRGS solution
- Mean accumulative degree WRMS reduction (bottom)
 - no significant contributions beyond degree 30
 - The EGSIEM combined solution with the best accumulative degree WRMS reduction
 - EGSIEM combination at NEQ level overcoming the outliers

The second DAAD TN workshop, 24-28 July 2018, Luxembourg

	Mean WRMS	Positive WRMS	
	reduction [%]	reduction [%]	
EGSIEM-COMB	25.31	89.95	
EGSIEM-AIUB	24.50	89.69	
EGSIEM-GFZ	22.17	83.51	
EGSIEM-GRGS	16.95	81.70	
EGSIEM-ITSG	24.78	88.66	
GFZ RL05a	22.61	84.79	
CSR RL05	23.78	88.14	
JPL RL05.1	22.56	86.08	

• EGSIEM-COMB with the best performance

 The mean WRMS reductions shown much better than those from Gu et al. (2017, GRL, Table S3) who achieved maximum values of 15%.

Gu et al. (2017). Comparison of observed and modeled seasonal crustal vertical displacements derived from multi-institution GPS and GRACE solutions. GRL, doi: 10.1002/2017GL074264

The second DAAD TN workshop, 24-28 July 2018, Luxembourg

- Median degree WRMS reduction (top)
 - higher degree WRMS reductions at annual period than those at full signal
- Median accumulative Degree WRMS reduction (bottom)
 - up to median values around 70% for all gravity models
 - similar performances among different gravity models at annual period

The second DAAD TN workshop, 24-28 July 2018, Luxembourg

The second DAAD TN workshop, 24-28 July 2018, Luxembourg

Validation of the long-term EGSIEM combined monthly solution using GNSS

The second DAAD TN workshop, 24-28 July 2018, Luxembourg

Post-processing monthly gravity fields

- Long-term monthly gravity fields (2002.8 2014.10)
 - EGSIEM combined solution at the solution level (2002.8-2014.10, see Jean et al. (2018))
 - Products from three official GRACE ACs (GFZ RL05a, CSR RL05, JPL RL05.1)
 - Additional products from AIUB RL02 and ITSG2016
- Standard processing steps
 - Replacing C₂₀ from SLR (Cheng et al., 2011)
 - Restoring degree-1 from Swenson et al (2008)
 - Adding back AOD1B GAC RL05
 - Filtering with a Gaussian filter 500 km
 - Deriving displacements at GNSS stations
 - Removing the mean and trend

Jean et al. (2018). Combination of GRACE monthly gravity field solutions from different processing strategies. Journal of Geodesy, doi: 10.1007/s00190-018-1123-5

- Degree WRMS reduction (top)
- Accumulative Degree WRMS reduction (bottom)
- Similar characteristics as the the two-year monthly gravity models

The second DAAD TN workshop, 24-28 July 2018, Luxembourg

	Reference	ITRF2014	JPL GNSS
	frame data	residuals	time series
	(312 stations)	(928 stations)	(788 stations)
	Mean [%]	Mean [%]	Mean [%]
EGSIEM	23.9	20.9	16.0
AIUB RL02	23.0	19.8	16.0
CSR RL05	24.5	21.2	15.7
GFZ RL05a	21.9	18.1	13.8
JPL RL05.1	22.8	19.2	15.2
ITSG2016	24.5	21.1	16.1
JPL RL05.1 ITSG2016	21.9 22.8 24.5	18.1 19.2 21.1	13.8 15.2 16.1

- EGSIEM, CSR RL05a and ITSG2016 demonstrating similar performance and slightly better than others
- The mean WRMS reductions shown here much better than those from Gu et al. (2017, GRL, Table S3) who achieved maximum values of 15%.

The second DAAD TN workshop, 24-28 July 2018, Luxembourg

	Reference	ITRF2014	JPL GNSS
	frame data	residuals	time series
	(312 stations)	(928 stations)	(788 stations)
	Median [%]	Median [%]	Median [%]
EGSIEM	73.5	67.7	61.4
AIUB RL02	73.6	68.8	64.1
CSR RL05	74.0	69.7	59.8
GFZ RL05a	73.5	68.4	57.8
JPL RL05.1	70.1	66.8	61.6
ITSG2016	73.6	69.0	60.7

The second DAAD TN workshop, 24-28 July 2018, Luxembourg

Validation of the long-term EGSIEM combined monthly solution using OBP records

The second DAAD TN workshop, 24-28 July 2018, Luxembourg

Concept of Validation using OBP records

Validation of the long-term EGSIEM combined solution

- Left: global; right: Kuroshio Extension System Study (KESS)
- Globally, close to zero change in variance when subtracting GRACE at many in-situ stations, in particular the tropics and sub-tropics regions.
- Large explained variances in the stations in the Arctic ocean
- Good correspondence also in the surroundings of the Antarctic Circumpolar Current

Validation of the long-term EGSIEM combined solution

- Differences of explained variances between other gravity solutions and EGSIEM combined solution
- JPL RL05 mascons revealing slightly better fit with in-situ OBP records than EGSIEM
- Similar performance between
 ITSG2016 and EGSIEM, and
 both solutions better than
 GFZ RL05a, which is also
 observed by the validation
 using GNSS
- GFZ RL05a Tellus generally performing worse than all other solutions which is due to the different postprocessing strategy

The second DAAD TN workshop, 24-28 July 2018, Luxembourg

Summary

• Validation using GNSS time series

- Generally, good agreement between the GRACE-derived vertical displacements and the GNSSobserved counterparts, especially at the annual period
- The best performance from the official EGSIEM combined solution with respect to other gravity products for 2006&2007
- Similar performances of the long-term EGSIEM combined solution with CSR RL05 and ITSG2016, and slightly better than others
- Degree and accumulative degree WRMS reduction analysis being useful for validation
- Validation using OBP records
 - Good agreement between in-situ OBP records with GRACE over the Arctic ocean and the Antarctic Circumpolar Current
 - JPL mascons with the slightly better performance than others
 - Similar performance between EGSIEM and ITSG2016, better than GFZ RL05a (confirmed by GNSS as well)
 - Different GRACE data post-processing strategies affecting the validation results, e.g. GFZ RL05a Tellus

Thank you very much!

