

Tunnel Monitoring and Disease Screening Base on Mobile Laser

Teacher : Jiexian Wang

Speaker : Jin Bao

2018.07 上 海(shang hai)

Content

1. Background

- 2. Research status
- 3. Principle
- 4. Algorithm
- 5.Consequence
- 6.Conclusion

With the leap-forward development of the metro industry, the rail transit network has been rapidly established.

Many engineering practices have proved that various construction activities along the line directly affect the safety of the subway structure in soft soil.

It is necessary to monitor and evaluate whether the rail transit structure exist the security risks.

Existing monitoring products

Product	Gauge Sensor	Odometer	Titl Sensor	Scanner	Profiler	Inertial Measurement Unit
GRP3000	Y	Y	Y	Ν	Y	Ν
GRP5000	Y	Y	Y	Y	Ν	Ν
SiTrack One	Y	Y	Ν	Y	Ν	Y

Leica's new mobile orbit measurement system, SiTrack One, is the representative of mobile scanning systems in recent years. The hardware are too expensive, so we want to simplify the system and use software to compensate for angle and distance errors.

Flow chart of core data processing

Image filling and smoothing

Image Filling: A BMP image of a certain size, the coordinates corresponding to the pixel position are calculated, and filled with the corresponding gray value of the point to obtain a tunnel tile.

	$\begin{pmatrix} 0.35 & 0.4 \\ 0.45 & 0.4 \\ 0.50 & 1.0 \\ 0.45 & 0.4 \\ 0$	45 0.50 71 1.00 00 0.00 71 1.00	0.45 1.00 1.00 0.71	0.35 [°] 0.45 0.50 0.45
	(0.35 0.4 interpo	15 0.50 lation	0.45 oper	0.35 ator

image filling

Image smoothing: The way is to give the gray value of the pixel without gray point . The interpolation weight operator is as follows.

1	7	1	1	1	1000	45	1	1		1		-	<u>i</u> er		1		1	100	-	à		1	1	140			ale le	4		1	22	1	01.400	infl	1	1	ļ
同時		0	a	- 14	F	• 		1.5 1.1	17	1	: []	श . ह	1 1 11	11 IL	1	1 1	•		я , П		11	2 4 FT	F. D	. f.	F	. C	8 10	. r.	F) F)	ED	21 17	1 F.	8	e e	61 191	10	
200		a a	たち	11 10	DA	Ser.		1	1000	11.2		85	11. E	EN .	0.5	0.00		10 m	19 1	n g	0.19	12.00	-De	in the		0.0	10	100	10	E	11 10	17 E	12	11.20	1.10	10 m	
8		10	12	. 0	E	4	- Marine			. 0	à	»	12	đ		1	-		τ.		ne	n.e.	10	10	n	1.00	E.	, a	a alla	ti i	10	. C		. 0	0	0	
12.52		10	1.11	, D D	E E	- E	T ALLE	1	00	. 0			0.0	90	TA T	PP	1 10 12			6 0	ц п п	4 C C	20	100	D fi	12 42	0.0	E D	101	. n	10	0.0	n	n n	122	, C	
四川川	144	Ē			の田戸	ta di		þí	i	N.B		4 -1 = (6)			10	14			120	6		- 11		11		100	-		En .				1.21	14	- 141 - 141		
- ED EL		11 .0	and a	6	LL	10 • 11	County I	0.0	22	10		and a	2 12	0.0.	12.27	12.22	1 23		A.	12 23	E D	0	120	a re	n n	12 22	ER -	U, E	1913	10.00	0.6	10	Bill	2.4	EE.	a L	
8		n n		• 0	4	10	South State				9		-	in the second se	-	0	100			121	u t		10	D	10	5	E	e	e	6. m	0	n	0	10	'n	- 10	
int an		13,52	日日	.0	11.10	-140			1 M 10	1.4			16 14	a ri	1.00	1.52	-	2 6	37	2012	12.20	10.00	57.		- 1011	40	Li II	- CA //	21,00	* E	2017	° 5	21 ¹¹	-	1 march	1000	
EX EL	-	100	LE N	1	-HAX	1	and the second se				and the second		in a state	202	EI .	1			11.	51	11. 1		100	• 1	(61.) 54		12	- 40 - 40	E I	1	1		10 A	97 <mark>(1)</mark>	The second	U B B	
		2		Č.	siere	de		-									1	1	1.94	4		4	-	4	eseria:	3	Contract of	-		1		-		à	-	2	i

image smoothing

Seams identification

Edge detection: Convolution are often used to approximate the gradient of the image using some small area templates.

prewitt gradient	robert gradient	sobel gradient
operator	operator	operator

Binarization : Otsu algorithm that is an adaptive threshold determination method, which is a global-based binarization algorithm.

If image scale is M^*N , N1 indicates that the gray value of the pixel is less than the threshold number, else is N2:

$$\omega_{1} = \frac{N_{1}}{M \times N}$$

$$\omega_{2} = \frac{N_{2}}{M \times N}$$

$$\omega_{1} + \omega_{2} = M \times N$$

$$\mu = \mu_{1} \times \omega_{1} + \mu_{2} \times \omega_{2}$$

$$g = \omega_{1} \times (\mu - \mu_{1})^{2} + \omega_{2} \times (\mu - \mu_{2})^{2}$$

Seams identification

Error correction

automatic seams identification

manual correction

Error correction

Error correction

tilted seams image

Segment fitting

Convergence verification of repeatability

Convergence verification of accuracy

verification of the accuracy of mobile tunnel monitoring in a certain section of shanghai

同海大学

(1) Low-cost and efficient monitoring systems have a wide range of needs.

(2) Through large-scale measured data calculating, it is verified that the system of repeatability is extremely high and stable, accuracy still need to improve and the tunnel image is clear, which can meet the engineering requirements.

Future work

(1) Tunnel point cloud will correct the scanner horizontal angle error.

(2) Find ways to improve the accuracy of the convergence.

Thank you for listening

T H A N K Y O U

