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Where 𝒀 is the output matrix (vector), 𝛃 is the connecting matrix between hidden layer and output layer, H is 

the hidden layer matrix (feature mapping matrix).

1 1 11 1 1

1 1

( ) ( )

( ) ( )

L L

N N L N NL N L

g b g b

g b g b


    
  
     

w x w x
H

w x w x

L
M O M

L

The estimated solution of 𝛃 based on least squares estimation is 
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ELM is a newly developed single layer feedforward neural network (SLFN),  proposed by Huang (2006). 

The model of ELM can be described as:

$ β H Y

 - connecting matrix between input layer 

      and hidden layer

 - input matrix

 - bias matrix
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𝑯+ is the Moore-Penrose generalized inverse of the feature mapping matrix H. 

Basic Theory of Extreme Learning Machine (ELM)
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ELM has fast training speed and shows high accuracy. But there exists two main problems for ELM.

1. Using Moore-Penrose generalized inverse to estimate the solution of  𝛃 tend to generate an over-fitting 

model

2. Instability of  solution of  𝛃 because of ill-pose in normal matrix 𝐍 = 𝐇𝐓𝐇

In order to improve generalization performance and stability of ELM, regularization is brought in to penalizes 

the coefficients of weight matrix  𝛃. The model of ELM with regularization is as follows:

In such case, the solution of  𝛃 can be described as:

or
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Regularized ELM
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How to choose the expression of  𝛃

a) Number of training samples N < number of hidden layer nodes L, equation (2) is chosen

b) Number of training samples N > number of hidden layer nodes L, equation (3) is chosen

In normal cases,  we have sufficient training samples, so that we choose equation (3) as the solution of  𝛃. But 

how to choose an optimal regularization parameter 𝜆 is still a problem.

Deng (2009) has proposed a heuristic method. 

Cross-validation is used to choose a regularization

parameter with minimum RMSE for validation set.
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A-optimal design regularization

Cai (2004) proposed A-optimal design regularization. With A-optimal design regularization, the 

regularization parameter is determined by the minimum trace of mean square error (MSE) of  𝛃.

Where Cov( 𝛃) is Variance-Covariance matrix 

and B is bias vector (matrix).
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2MSE{β}:= E{(β -β)(β -β) } = E β -β

= E[(β - Eβ) + (Eβ -β)] [(β - Eβ) + (Eβ -β)]

= E[(β - Eβ) (β - Eβ)]+[(Eβ -β)][+(Eβ -β)]

= Cov{β}+ BB
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Then we can calculate MSE( 𝛃)

$    T -1 T T -1MSE(β) = (H H + I) [H H + ( I)ββ'( I)](H H + I)

 The regularization parameter λ follows by A-optimal design in the sense of mi 

if and on

n

ly if 

trace MSE

$
$

$ $

trace 


 


T T -3

T -2 T T -1

(H H(H H + I) )

β'(H H + I) H H(H H + I) β

The performance of ELM with A-optimal design regularization will be evaluated on 3 case studies.
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Simulated Case: Approximation of “Sine Function”

Simulation 1 (without outliers):

Dataset: 10000 samples uniformly distributed in (−10, 10) of sine function

Training data: 5000 samples with random noise distributed in (−0.2, 0.2)
Testing data: other 5000 noise-free samples

Simulation 2 (with outliers):

Dataset: 9900 samples uniformly distributed in (−10,10) of sine function

Training data: 4900 samples with random noise distributed in (−0.2, 0.2) and 100 outliers distributed in

(−2, 2)
Testing data: other 5000 noise-free samples

Simulation without outliers

ELM RELM

RMSE (training data) 0.1150 0.1157

RMSE (testing data) 0.0145 0.0151

Simulation with outliers

ELM RELM

RMSE (training data) 0.2566 0.2405

RMSE (testing data) 0.1006 0.0524
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Approximation by ELM without outliers Approximation by RELM without outliers
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Approximation by ELM with outliers Approximation by RELM with outliers
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Real-World Regression Analysis

Data source:

http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html

An example of datasets: Bank domains

 Synthetically generated data from a simulation of how bank-customers choose their banks.

 32 numerical features as input and 1 numerical decision as output

 8192 samples, 4500 for training and 3692 for testing

Datasets Training data Testing data Feature 

Bank domains 4500 3692 32

Puma 4499 3693 32

Triazines 124 62 60

Pyrim 49 25 27

Machine CPU 139 70 6

Kinematic 5461 2731 8

California 

housing

13760 6880 8

Stocks domain 633 317 9

Fried_delve 27179 13589 10
11
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Dataset

RMSE

Training data Testing data

ELM RELM ELM RELM

Bank domains 0.0795 0.0806 0.0901 0.0819

Puma 0.0245 0.0248 0.0296 0.0251

Triazines 0.1479 0.1494 0.1661 0.1391

Pyrim 0.0776 0.0780 0.1004 0.0876

Machine CPU 0.0461 0.0506 0.0594 0.0511

Kinematic 0.0891 0.0903 0.1021 0.0968

California housing 0.1221 0.1246 0.1256 0.1251

Stocks domain 0.0297 0.0311 0.0396 0.0316

Fried_delve 0.1976 0.2011 0.3169 0.2466

Testing results: comparison of RMSE between ELM and RELM
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Image Multiclass Classification 

Data source: https://glovis.usgs.gov/

Study area: a part of Wuhan, China

Data: Landsat 8 satellite image

Resolution of image: 30m × 30m

Image size: 598 × 597 pixels

Feature: 7 spectral bands

5 classes: grass, tree, bare land, building, water

3550 labeled pixels as samples.

Training data:

Each class: 100 randomly chosen pixels

Testing data:

Other 3050 pixels. 

Number of labeled pixels for each class

building grass tree bare land water total

750 569 512 989 730 3550
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Konfusionsmatrix Class from reference data
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Water Bare land Tree Grass Building 

Water 730 0 0 0 0

Bare land 80 890 1 7 11

Tree 31 2 156 323 0

Grass 0 0 0 569 0

Building 31 7 0 0 712

Class from reference data
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Water Bare land Tree Grass Building 

Water 730 0 0 0 0

Bare land 35 941 2 5 6

Tree 7 14 384 107 0

Grass 0 0 1 568 0

Building 13 7 0 7 723

Original ELM:

A-optimal design 

regularized ELM:
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Accuracy Cohens kappa coefficient (𝜿)

Original ELM 84.11% 0.7596

Regularized ELM 93.16% 0.9189

number of correct pixels
accuracy = 

number of total pixels
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with 𝑝0 − the relative observed agreement

𝑁 − sum of elements in the konfusionsmatrix

𝑝𝑐 − the hypothetical probability of chance agreement
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Original ELM A-optimal design regularized ELM
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Conclusion

1. With A-optimal design regularization, the robustness of ELM is obviously improved.

2. Overfitting model can be effectively avoided in training process, so that generalization 

performance can be advanced.

3. In image classification,  A-optimal design regularization helps original ELM to improve the 

accuracy of classification.

Outlook

1. Apply the A-optimal design regularization in multi-hidden-layer neural networks.

2. Try to solve other regularization problems in machine learning, e.g. for Support Vector Machine 

(SVM).

3. Study the prospect of A-optimal design regularization in deep learning, e.g. for convolutional 

neural networks (CNNs).
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