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Motivation
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Earth Orientation Time Series

• Earth Orientation Time Series given in 1997 IERS system at 0.05 year interval has 
six main dataset:

polar motion in x direction and y direction,

Universal Time,

Length of Day,

celestial pole offsets of precession and nutation.

• Polar motion has three major components:

Chandler Wobble with period about 435 days,

Annual Wobble with nearly constant amplitude of about o.1’’,

trend.

• Polar motion time series from the year 

1960 to 2009 will be analyzed.
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Singular Spectrum Analysis
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1.

Decomposition

Reconstruction

Embedding

Singular Value Decomposition(SVD)

Grouping

Anti-diagonal averaging



• Consider time series Y = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁

• Create a second dimension by lagging the data

• The time series is repeated, but provided with a time lag in the columns

• data matrix is called trajectory matrix with equal values on anti-diagonals
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𝐗 =

𝑥1 𝑥2 𝑥3 ⋯ 𝑥𝐿
𝑥2 𝑥3 𝑥4 ⋯ 𝑥𝐿+1
𝑥3 𝑥4 𝑥5 ⋯ 𝑥𝐿+2
⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝐾 𝑥𝐾+1 𝑥𝐾+2 ⋯ 𝑥𝑁

𝐗
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lag

𝐿 = lag window size

𝐾 = 𝑁 − 𝐿 + 1 = reduced time series length

Embedding



Singular Value Decomposition(SVD)
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Left eigenvector

𝐗 = 𝐗1 + 𝐗2 +…+ 𝐗d

After SVD, trajectory matrix can be written as:

right eigenvector



Grouping
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𝐗 = 𝐗𝐈𝟏 + 𝐗𝐈𝟐 +…+ 𝐗𝐈𝐦

Splitting 𝐗 into disjoint subsets I1,I2,...,Im as:

Each 𝐗𝒊 will reflect the properties of initial data 
components which have a meaningful interpretation



Anti-diagonal averaging

Note that time series Y = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁 is 
reconstructed by anti-diagonal averaging of 𝐗
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𝑥𝑖 = anti_diag_average 𝐗, 𝑖 =

1
𝑖
 𝑗=1
𝑖 𝐗𝑖−𝑗+1,𝑗

1
𝐿
 𝑗=1
𝐿 𝐗𝑖−𝑗+1,𝑗

1
𝑁−𝑖+1

 𝑗=𝑖−𝑁+𝐿
𝐿 𝐗𝑖−𝑗+1,𝑗

,
𝑖 = 1,… , 𝐿
𝑖 = 𝐿 + 1,… , 𝐾
𝑖 = 𝐾 + 1, … ,𝑁

𝑥1

𝑥2

𝑥3
⋮

𝑥𝑁

𝐗 =

𝑥1 𝑥2 𝑥3 ⋯ 𝑥𝐿
𝑥2 𝑥3 𝑥4 ⋯ 𝑥𝐿+1
𝑥3 𝑥4 𝑥5 ⋯ 𝑥𝐿+2
⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝐾 𝑥𝐾+1 𝑥𝐾+2 ⋯ 𝑥𝑁



Anti-diagonal averaging

Now every mode can be averaged in anti-diagonal sense, 

resulting in the time series reconstruction. 
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𝑧𝑖 = anti_diag_average 𝑢𝑚𝜎𝑚𝑣𝑚
𝑇 , 𝑖

𝑢𝑚𝑣𝑚
𝑇

Y𝑚 = 𝑧1, 𝑧2, 𝑧3, … , 𝑧𝑁



SSA of polar motion in x direction
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Decomposition Reconstruction

curve fitting by equation

𝑓 = 𝑎1 sin(𝑏1𝑡 + 𝑐1)

Decomposition Reconstruction



SSA of polar motion in y direction
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curve fitting by equation

𝑓 = 𝑎1 sin(𝑏1𝑡 + 𝑐1)

Decomposition Reconstruction



2. Multi-channel Singular 
Spectrum Analysis
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Embedding

Covariance matrix

Reconstruction



Embedding

• Consider time series 𝑌 = 𝑥𝑑 𝑛 (𝑑 = 1…𝐷 and n = 1…𝑁 ) be a 
multivariate time series with D channels of length N.

• Create a second dimension by lagging the data

• Data matrix is called trajectory matrix
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𝐗 =

𝑥1 (1) 𝑥1(2) ⋯ 𝑥1(𝐿) 𝑥𝐷 (1) 𝑥𝐷(2) ⋯ 𝑥𝐷 (𝐿)
𝑥1 (2) 𝑥1(3) ⋯ 𝑥1(𝐿 + 1) 𝑥𝐷 (2) 𝑥𝐷(3) ⋯ 𝑥𝐷 (𝐿 + 1)
⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮

𝑥1 (𝐾) 𝑥1(𝐾 + 1) ⋯ 𝑥1 (𝑁) 𝑥𝐷 (𝐾) 𝑥𝐷(𝐾 + 1) ⋯ 𝑥𝐷 (𝑁)

ti
m

e

lag
𝐿 = lag window size

𝐾 = 𝑁 − 𝐿 + 1 = reduced time series length



Covariance matrix and reconstruction

• Calculate the grand convariance matrix 

• Diagonalized covariance matrix

• Principal components projecting trajectory matrix X onto 
eigenvectors. 
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Covariance matrix

Reconstruction
associatd eigenvectors at d channel

normalization factor

k = 1, ... DL, and n = 1, ..., N-L+1

whose columns are associalated
eigenvectors



MSSA of polar motion
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curve fitting by equation

𝑓 = 𝑎1 sin(𝑏1𝑡 + 𝑐1)



MSSA of polar motion
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curve fitting by equation

𝑓 = 𝑎1 sin(𝑏1𝑡 + 𝑐1)



3. Complex Singular
Spectrum Analysis
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Decomposition

Reconstruction

Embedding

Singular Value Decomposition (SVD)

Grouping

Anti-diagonal averaging

Separation Separating true and imaginary part

Generation



Generation

• Consider time series Y1 = 𝑥1
1, 𝑥2
1, … , 𝑥𝑁

1 and Y2 = 𝑥1
2, 𝑥2
2, … , 𝑥𝑁

2

• Generate a new time seires by  Y = Y1 + 𝑖 ∙ Y2 = 𝑥1, 𝑥2, … , 𝑥𝑁

• Generate trajectory matrix 
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𝐗 =

𝑥1 𝑥2 𝑥3 ⋯ 𝑥𝐿
𝑥2 𝑥3 𝑥4 ⋯ 𝑥𝐿+1
𝑥3 𝑥4 𝑥5 ⋯ 𝑥𝐿+2
⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑘 𝑥𝑘+1 𝑥𝑘+2 ⋯ 𝑥𝑁

𝐗ti
m

e

lag

𝐿 = lag window size

𝑘 = 𝑁 − 𝐿 + 1 = reduced time series length

Embedding



Separation

Anti-diagonal sense can be used in every mode 
resulting in the time series reconstruction. 
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𝑢𝑚𝑣𝑚
𝑇

𝐘𝒎
𝟏 = 𝐫𝐞𝐚𝐥 𝐘𝒎 ,
𝐘𝒎
𝟐 = −𝐢𝐦𝐚𝐠(𝐘𝒎)

𝑧𝑖 = anti_diag_average 𝑢𝑚𝜎𝑚𝑣𝑚
𝑇 , 𝑖

Y𝑚 = 𝑧1, 𝑧2, 𝑧3, … , 𝑧𝑁

Singular Value Decomposition (SVD)Grouping Anti-diagonal averaging



CSSA of polar motion Time Series in the real part
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𝑓 = 𝑎1 sin(𝑏1𝑡 + 𝑐1)



CSSA of polar motion Time Series in imaginary part
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𝑓 = 𝑎1 sin(𝑏1𝑡 + 𝑐1)
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Comparison CSSA with SSA 
and MSSA

4.

modes comparison

reconstruction comparison



Modes comparison
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main components comparison in x direction
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main components comparison in y direction
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• CSSA with constant single mode in grouping

• CSSA perform well in decomposition Earth Orientation Time Series

into Chandler Wobble, Annual Wobble and trend.

26

5. Conclusion



• CSSA can be just used in 2D data. The next step of researth is to find out the 
usefulness in multi-channel time series.

• CSSA shows advantage in polar motion time series, in the future, it may use in 
other fields.
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6. Outlook
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