Complex Singular Spectrum Analysis of Earth Orientation Time Series

Yang LI, University of Stuttgart

Supervisor: Prof. Dr.-Ing. Nico Sneeuw, Institute of Geodesy, University of Stuttgart Prof. Dr. Weiping Jiang, GNSS Research Center, Wuhan University

Motivation

Earth Orientation Time Series

 Earth Orientation Time Series given in 1997 IERS system at 0.05 year interval has six main dataset:

polar motion in x direction and y direction,

Universal Time,

Length of Day,

celestial pole offsets of precession and nutation.

- Polar motion has three major components: Chandler Wobble with period about 435 days, Annual Wobble with nearly constant amplitude of about 0.1", trend.
- Polar motion time series from the year
 1960 to 2009 will be analyzed.

rce: plot provided by the former Central Bureau. (Created: 1 Jan 2001). ss://www.iers.org/IERS/EN/Science/EarthRotation/Xpole.html?nn=12932

Embedding

- Consider time series $Y = (x_1, x_2, x_3, ..., x_N)$
- Create a second dimension by *lagging* the data
- The time series is repeated, but provided with a time lag in the columns
- data matrix is called *trajectory* matrix with equal values on anti-diagonals L = lag window size

K = N - L + 1 = reduced time series length

Singular Value Decomposition(SVD)

After SVD, trajectory matrix can be written as:

$$\mathbf{X} = \mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_d$$

$$d = max\{i : \lambda_i > 0\} = rank\mathbf{X}_i$$

Splitting X into disjoint subsets I1,I2,...,Im as:

$$X = X_{I1} + X_{I2} + ... + X_{Im}$$

Each X_i will reflect the properties of initial data components which have a meaningful interpretation

Anti-diagonal averaging

Note that time series $Y = (x_1, x_2, x_3, ..., x_N)$ is reconstructed by anti-diagonal averaging of **X**

Anti-diagonal averaging

Now every mode can be averaged in anti-diagonal sense,

resulting in the time series reconstruction.

 $z_i = \text{anti_diag_average}(u_m \sigma_m v_m^T, i)$

$$\mathbf{Y}_m = (z_1, z_2, z_3, \dots, z_N)$$

SSA of polar motion in x direction

Decomposition

Reconstruction

GIS

SSA of polar motion in y direction

Decomposition

Reconstruction

2. Multi-channel Singular Spectrum Analysis

Embedding

- Consider time series $Y = x_d (n) (d = 1 \dots D \text{ and } n = 1 \dots N)$ be a multivariate time series with D channels of length N.
- Create a second dimension by *lagging* the data
- Data matrix is called *trajectory* matrix

$$\mathbf{X} = \begin{pmatrix} x_{1}(1) & x_{1}(2) & \cdots & x_{1}(L) & x_{D}(1) & x_{D}(2) & \cdots & x_{D}(L) \\ x_{1}(2) & x_{1}(3) & \cdots & x_{1}(L+1) & x_{D}(2) & x_{D}(3) & \cdots & x_{D}(L+1) \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\ x_{1}(K) & x_{1}(K+1) & \cdots & x_{1}(N) & x_{D}(K) & x_{D}(K+1) & \cdots & x_{D}(N) \end{pmatrix} \begin{pmatrix} \mathbf{x}_{1}(K) & \mathbf{x}_{1}(K+1) & \cdots & \mathbf{x}_{1}(N) \\ \mathbf{x}_{2}(K) & \mathbf{x}_{2}(K+1) & \cdots & \mathbf{x}_{2}(K) \end{pmatrix}$$

Covariance matrix and reconstruction

Covariance matrix

- Calculate the grand convariance matrix
- Diagonalized covariance matrix
- Principal components projecting trajectory matrix X onto $A = \mathbf{X}E$ eigenvectors. $a_k(n) = \sum_{d=1}^{D} \sum_{l=1}^{L} x_d (n+l-1) e_{dk}(l)$

Reconstruction

 $C_{\mathbf{X}} = \frac{1}{N} \mathbf{X}^T \mathbf{X}$

 $\Lambda = Q^T C_{\mathbf{X}} Q -$

whose columns are associalated eigenvectors

MSSA of polar motion

Decomposition

Reconstruction

MSSA of polar motion

Decomposition

Reconstruction

3. Complex Singular Spectrum Analysis					
Generation					
		Embedding			
Decomposition		O(x, y, y) = O(x, y, y)			
		Singular Value Decomposition (SVD)			
		Grouping			
Reconstruction -		Anti dia manalayya mangina			
		Anti-diagonal averaging			
Separation -		Separating true and imaginary part			

Generation

- Consider time series $Y^1 = (x_1^1, x_2^1, ..., x_N^1)$ and $Y^2 = (x_1^2, x_2^2, ..., x_N^2)$
- Generate a new time seires by $Y = Y^1 + i \cdot Y^2 = (x_1, x_2, ..., x_N)$

Embedding

• Generate *trajectory* matrix

$$\mathbf{X} = \begin{pmatrix} x_1 & x_2 & x_3 & \cdots & x_L \\ x_2 & x_3 & x_4 & \cdots & x_{L+1} \\ x_3 & x_4 & x_5 & \cdots & x_{L+2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_k & x_{k+1} & x_{k+2} & \cdots & x_N \end{pmatrix} \xrightarrow{\text{lag}} \mathbf{X}$$

ingular Value Decomposition (SVD) Frouping Anti-diagonal averaging

Anti-diagonal sense can be used in every mode resulting in the time series reconstruction.

 $z_i = \text{anti_diag_average}(u_m \sigma_m v_m^T, i)$

$$\mathbf{Y}_m = (z_1, z_2, z_3, \dots, z_N)$$

 $Y_m^1 = real(Y_m),$ $Y_m^2 = -imag(Y_m)$

CSSA of polar motion Time Series in the real part

Decomposition

Reconstruction

 $f = a_1 \sin(b_1 t + c_1)$

fitting parameter	a_1 [arcsec]	b_1 [rad/year]
CW	0.1517	5.305
AW	0.08638	6.289

CSSA of polar motion Time Series in imaginary part

Decomposition

Reconstruction

 $f = a_1 \sin(b_1 t + c_1)$

a ₁ [arcsec]	b_1 [rad/year]
0.1515	5.305
0.08635	6.29

4. Comparison CSSA with SSA and MSSA

modes comparison

reconstruction comparison

methods	SSA	SSA	MSSA	MSSA	CSSA	
	(for x_p)	(for y_p)	(for x_p)	(for y_p)	(for x_p and y_p)	
Trend mode 5	mode 5	mode 1	mode 1	mode 1	mode 1	
	mode 5		and mode 8			
Chandler	mode 1	mode 2	mode 2	mode 2	mode 2	
Wobble	and mode 2	and mode 3	and mode 3	and mode 3		
Annual	mode 3	mode 4	mode 4	mode 4	mode 3	
Wobble	and mode 4	and mode 5	and mode 5	and mode 5	mode 5	
Residual	else	else	else	else	else	

main components comparison in x direction

main components comparison in y direction

GIS

5. Conclusion

- CSSA with constant single mode in grouping
- CSSA perform well in decomposition Earth Orientation Time Series into Chandler Wobble, Annual Wobble and trend.

6. Outlook

- CSSA can be just used in 2D data. The next step of researth is to find out the usefulness in multi-channel time series.
- CSSA shows advantage in polar motion time series, in the future, it may use in other fields.

7. Reference

- H. Hassani(2007). "Singular Spectrum Analysis: Methodology and Comparison". In: Journal of Data Science, pp. 239–257.
- Höpfner, Joachim(2003). "Chandler and annual wobbles based on space-geodetic measurements". In: Journal of Geodynamics 36.3, pp. 369–381.
- Q. Chen, T.van Dam, N. Sneeuw, M. Weigelt, P. Rebischung(2013). "Singular spectrum analysis for modeling seasonal signals from GPS time series". In: Geodynamics.

Thank you