# **Precise Point Positioning and Its Application in Geoscience**

#### Fei Guo, Xiaohong Zhang

School of Geodesy and Geomatics, Wuhan University

25 July, 2018



2. Benefits of Multi-GNSS for PPP

#### 3. Challenges of Multi-GNSS for PPP

4. Applications in Geoscience

#### **GNSS** Positioning technologies







PPP uses state space representation (SSR) correction products such as **precise satellite orbits**, **clocks** and **signal biases** from either commercial or/and public (e.g., IGS) that are delivered to the user via satellite and/or internet.

#### Mathematic model

$$L_i^k - \rho_i^k - c(\Delta t_i - \Delta t^k) - \alpha_i^k T_i + I_i^k - \lambda B_i^k - \varepsilon = 0$$
  
$$P_i^k - \rho_i^k - c(\Delta t_i - \Delta t^k) - \alpha_i^k T_i - I_i^k - c(b^k + b_i) - \varepsilon = 0$$

 $L_i^k, P_i^k$  - undifferenced carrier phase and code observations (meters)

- $\rho_i^k$  geometric distance (satellite-receiver)
- $B_i^k$  carrier phase bias, where  $\lambda B_i^k = \lambda (N_i^k + \delta N_i^k) + c(d^k + d_i)$

 $N_i^k, \delta N_i^k$  - integer carrier phase ambiguity and non-zero initial fractional phase

- $\Delta t_i, \Delta t^k$  receiver and satellite clock offsets
  - $T_i$  tropospheric total zenith delay
  - $\alpha_i^k$  troposphere mapping function
  - $I_i^k$  slant ionospheric delay

 $b_{i}, b^{k}; d_{i}, d^{k}$  - receiver and satellite code and phase hardware delays

- $\lambda$  corresponding carrier wavelength
- c speed of light
- ε random error or residual

#### Benefits and limitations

- ✓ Advantages of PPP w.r.t Double Differencing (DD)
  - Flexibility, higher efficiency, without dedicated reference station
- $\checkmark$  Wide range of applications
  - Atmosphere, earthquake monitoring, POD of LEO, etc.
- $\checkmark$  Simple model but complicated processing
  - Simple functional model; complicated error elimination and ambiguity resolution
- $\checkmark$  PPP is not as mature as DD
  - Accuracy, initialization time, reliability and stability

#### **D**evelopment and evaluation of PPP



#### **D** Development and evaluation of PPP



#### **Towards PPP-RTK**



#### **D** Towards PPP-RTK

| Method   | What is transmitted?                                                                                      | Initialisation time | Accuracy (horiz) |
|----------|-----------------------------------------------------------------------------------------------------------|---------------------|------------------|
| RTK/NRTK | Corrections per<br>satellite and per<br>(virtual) reference<br>station                                    | < 20 s              | ~ 2 cm           |
| РРР      | <ul><li>Orbits</li><li>Clocks</li></ul>                                                                   | > 40 min for float  | a few cm         |
| PPP-AR   | <ul><li>Orbits</li><li>Clocks</li><li>Phase biases</li></ul>                                              | ~ 30 min            | a few cm         |
| PPP-RTK  | <ul> <li>Clocks</li> <li>Orbits</li> <li>Phase biases</li> <li>Troposphere</li> <li>Ionosphere</li> </ul> | < 1 min             | a few cm         |

Choy S (2018)



2. Benefits of Multi-GNSS for PPP

#### 3. Challenges of Multi-GNSS for PPP

4. Applications in Geoscience

#### **Status of multi-GNSS**

|                                             | GNSS    | Sat. type                                                           | Navigation signals                                                                   | Num. Sat.             |
|---------------------------------------------|---------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------|
| PULLER OF ST                                | GPS     | Block IIR-A<br>Block IIR-B<br>Block IIR-M<br><mark>Block IIF</mark> | L1 C/A, L1/L2 P(Y)<br>L1 C/A, L1/L2 P(Y)<br>+L2C<br>+L5                              | 8<br>4<br>8<br>12     |
| CTONAS                                      | GLONASS | GLONASS-M<br>GLONASS-K1                                             | L1/L2 C/A+P<br>L1/L2 C/A+P, L3 (CDMA                                                 | 23<br>) 1 (+1)        |
|                                             | BDS     | GEO<br>IGSO<br>MEO<br>BDS-3 Experimental<br>BDS-3                   | B1, B2, B3<br>B1, B2, B3<br>B1, B2, B3<br>B1, B3,B1C, B2a, B2b etc.<br>B1C,B2a,B1,B3 | 5<br>6<br>3<br>5<br>8 |
| GALILEO                                     | GALILEO | IOV<br>FOC                                                          | E1, E5a/b/a+b<br>E1, E5a/b/a+b                                                       | 4<br>18               |
| HARA ARABE<br>Ispan Arabe<br>Ispanson Arabe | QZSS    | IGSO                                                                | L1, L2, L5                                                                           | 4                     |
| इसरो ांडाग्व                                | IRNSS   | IGSO<br>GEO                                                         | L5, S                                                                                | 4 3                   |

#### □ IGS multi-GNSS (MGEX) tracking network



http://www.igs.org/network?network=multi-GNSS,mgex-experimental

#### □ Improved usability/availability (multi-GNSS)

| Station | GPS (%) | GPS (%) |      |      |       | G/R/E/C (%) |                   |       |  |
|---------|---------|---------|------|------|-------|-------------|-------------------|-------|--|
|         | 10°     | 20°     | 30°  | 40°  | 10°   | 20°         | 30°               | 40°   |  |
| CENT    | 100.0   | 99.6    | 89.2 | 41.5 | 100.0 | 100.0       | 100.0             | 100.0 |  |
| CHDU    | 99.7    | 98.3    | 84.7 | 46.0 | 100.0 | 100.0       | 100.0             | 100.0 |  |
| SIGP    | 94.8    | 93.7    | 72.1 | 39.2 | 100.0 | 100.0       | 99.9              | 99.5  |  |
| CUT0    | 96.8    | 95.0    | 89.3 | 57.6 | 100.0 | 100.0       | 100.0             | 100.0 |  |
| GMSD    | 98.1    | 97.6    | 79.5 | 30.2 | 100.0 | 100.0       | 100.0             | 99.8  |  |
| NNOR    | 99.2    | 93.8    | 78.6 | 37.8 | 100.0 | 100.0       | 100.0             | 100.0 |  |
| ONS1    | 96.1    | 93.3    | 62.5 | 30.6 | 100.0 | 100.0       | <mark>99.9</mark> | 99.6  |  |









□ More combinations available (multi-frequency)

| Model     | Obs.     | $e_1$ | $e_2$  | $e_3$  | Ion.  | Noise |
|-----------|----------|-------|--------|--------|-------|-------|
| IF-PPP0   | B1/B2    | 2.487 | -1.487 | 0      | 0     | 2.90  |
| IF-PPP1 - | B1/B2    | 2.487 | -1.487 | 0      | 0     | 2.90  |
|           | B1/B3    | 2.944 | 0      | -1.944 | 0     | 3.53  |
| IF-PPP2   | B1/B2/B3 | 2.566 | -1.229 | -0.337 | 0     | 2.86  |
|           | B1       | 1     | 0      | 0      | 1     | 1     |
| UC-PPP    | B2       | 0     | 1      | 0      | 1.672 | 1     |
|           | B3       | 0     | 0      | 1      | 1.514 | 1     |

#### **BDS** dual- w.r.t. triple-frequency PPP



a more accurate and reliable solution can be achieved for triple-frequency PPP

#### □ Increasing positioning accuracy



#### □ Increasing positioning accuracy



**Kinematic PPP** 

□ Speeding up the convergence



The convergence speed of multi-constellation is 30-50% higher than that of single GPS

□ Speeding up the convergence



#### □ Increasing fixing rate of PPP-AR

#### TTFF of PPP-AR(min)

Fixing rate of PPP-AR(%)

|                               | static | kinematic |                               | static | kinematic |
|-------------------------------|--------|-----------|-------------------------------|--------|-----------|
| BDS                           | 526.1  | 617.8     | BDS                           | 16.8   | 12.1      |
| GPS                           | 21.7   | 34.6      | GPS                           | 98.7   | 95.3      |
| GLONASS<br>aided GPS          | 17.5   | 26.9      | GLONASS<br>aided GPS          | 99.2   | 97.9      |
| (GPS+BDS)                     | 16.7   | 24.5      | (GPS+BDS)                     | 99.3   | 98.9      |
| GLONASS<br>aided<br>(GPS+BDS) | 14.0   | 20.1      | GLONASS<br>aided<br>(GPS+BDS) | 99.6   | 99.1      |



2. Benefits of Multi-GNSS for PPP

#### 3. Challenges of Multi-GNSS for PPP

4. Applications in Geoscience

- Different coordinate systems
- **D** Different time systems
- Different constellation configurations
- Different signal structures
- Different data quality

□ Increasing number of biases (ISB, IFB, IFCB, DCB, etc.)

Biases are not estimable in absolute sense

**Relative** (fix a reference such as a ground receiver)

- Inter-Frequency Bias (IFB)
  - ✓ Satellite IFB
  - ✓ Receiver IFB
- Differential Code Bias (DCB)
  - ✓ Satellite DCB
  - ✓ Receiver DCB
- Differential Phase Bias (DPB)
  - ✓ Satellite DPB
  - ✓ Receiver DPB

Inter-System Biases (multi-constellations)

- Inter-system Time System Offset
  - ✓ GPS/GLONASS
  - ✓ GPS/GALILEO
  - ✓ GPS/COMPASS
- Inter-system Coordinate System Offset
  - ✓ GPS/GLONASS
  - ✓ GPS/GALILEO
  - ✓ GPS/COMPASS

**Steadily increasing number of types of biases to be dealt with** 

#### Differential Code Bias (DCB)

| GNSS    | Types of DCB                                                                                 | Num. |
|---------|----------------------------------------------------------------------------------------------|------|
| GPS     | Intra-freq.: C1C-C1W C2W-C2S C2W-C2L C2W-C2X<br>Inter-freq.: C1C-C2W C1C-C2W C1C-C5Q C1C-C5X | 8    |
| GLONASS | Intra-freq.: C1C-C1P C2C-C2P<br>Inter-freq.: C1C-C2C C1C-C2P C1P-C2P                         | 5    |
| Galileo | Inter-freq.: C1C-C5Q C1C-C7Q C1C-C8Q C1X-C5X<br>C1X-C7X C1X-C8X                              | 6    |
| BDS     | Inter-freq.: C2I-C7I C2I-C6I C7I-C6I                                                         | 3    |

Inter-Frequency Bias (IFB and IFCB)



➢ Inter-Frequency Bias (IFB and IFCB)

Seasonal Variation of L1/L5-L1/L2 Clock Difference



Variations for GPS satellites reach up to  $\pm 0.2$  m

**Oliver Montenbruck (2011)** 

#### Inter-Frequency Bias (IFB and IFCB)



Variations for BDS satellites reach up to  $\pm 0.03$  m

**Pan et al (2016)** 





• receiver type and firmware dependent

#### BDS satellite-induced code biases



Zhang et al (2017)

□ The efficiency of real-time processing of massive data



#### Products are not mature yet

- post/real time orbit
- ➢ post/real time clock
- > PCO/PCV model for the new emergeing satellites
- ➢ FCB products for PPP-AR
- > Quality of IGS released precise products
- Standard conventions for IFCB and DCB products
- > Real time precise ionospheric delay products

#### Models should be refined

- ✓ Consistency between various products, such as clock, ionospheric delay, FCB, DCB etc.
- ✓ Fast ambiguity resolution for the undifferenced ambiguities (with multifrequency and multi-GNSS)
- ✓ Optimization of PPP function model and stochastic model
- ✓ Quality control issues for PPP-RTK
- Parameterization of the ionospheric delay for the undifferenced and uncombined PPP model
- ✓ Initialization time should be further shortened (with sparse CORS)



2. Benefits of Multi-GNSS for PPP

#### 3. Challenges of Multi-GNSS for PPP

4. Applications in Geoscience

- **Geodetic survey**
- **Trajectory monitoring**
- **GNSS** seismology
- □ GNSS meteorology
- LEO POD









#### **Geodetic survey**



#### **Coseismic displacement**



#### □ Ionospheric delay retrieval (TEC)



Mean bias

Standard deviation

#### □ Ionospheric delay retrieval (TEC)



Single-frequency PPP results

#### □ Tropspheric delay retrieval (ZTD and PWV)



Lu et al (2015)

#### Precise orbit determination for LEO



GRACE satellite orbit determination: ~5 cm

### Future works

□ GNSS+LEO enhanced PPP

- Quality control issues
- More applications



# Thank you for your attention