

Estimation of Water Volume Variations for large-scale Lake Based on Multisource Satellite Data

Tongji University Jie Yu, Li Xin, Yi Lin 2018.07

- 2. AREA EXTRACTION OF LAKE SURFACE
- 3. HEIGHT EXTRACTION OF LAKE SURFACE
- 4. ESTIMATION OF WATER VOLUME VARIATIONS
- 5. CONCLUSIONS AND FUTURE WORK

Issues

- Shortage of water resources
- Water pollution
- Drought and flood disasters

How to **accurately** and **rapidly** monitor the change of water resources has become an important research field.

Water resources	- Water surface area	Water surface height	Water volume		
Traditional method	 Field measurement 	Field measurement	 Combine field-measured data with accurate terrain data 		
Disadvantages	 Low accuracy Low automation 	 Time-consuming Labor-intensive High-cost 	 Difficult to acquire terrain data Impractical Hard to do a long time series analysis 		
Improvements	 Multi-spectral imagery Machine learning 	 Multi-mission altimetry data 	 Multi-source remote sensing data Long-term analysis Driving force analysis 		
	Water body extraction	Water level change calculation	Water volume variation estimation		

Study area

Lake Victoria

- 0°20'N/3°0'S ~ 31°40'E/35°53'E
- Largest freshwater lake in Africa and second largest in the world
- Approximately 68600km²
- Shared with Tanzania, Uganda and Kenya

Data

Multi-spectral imagery

• MODIS/ 500m, 2012-2017

Multi-mission altimetry data

- Jason-2, 2012-2016
- Jason-3, 2016-2017

AREA EXTRACTION OF LAKE SURFACE HEIGHT EXTRACTION OF LAKE SURFACE ESTIMATION OF WATER VOLUME VARIATIONS CONCLUSIONS AND FUTURE WORK

AREA EXTRACTION OF LAKE SURFACE

February 2, 2012

AREA EXTRACTION OF LAKE SURFACE

	2012	2013	2014	2015	2016	2017	Total
Jan		2	1				3
Feb	1	1	1	1	1		5
Mar	2			2	1		5
Apr	1						1
Мау	2	2	1	1		1	7
Jun		1				1	2
Jul				2	1		3
Aug		1		2	1		4
Sep				1			1
Oct		1	1				2
Nov	1						1
Dec		1	1		1		3
Total	7	9	5	9	5	2	37

AREA EXTRACTION OF LAKE SURFACE

Maximum

Area/km ²	Date
66,861.25	2013-08-21
65,139.00	2014-10-08
1,722.25	
	Area/km ² 66,861.25 65,139.00 1,722.25

2. AREA EXTRACTION OF LAKE SURFACE

- 4. ESTIMATION OF WATER VOLUME VARIATIONS
- 5. CONCLUSIONS AND FUTURE WORK

$$H = R_{alt} - R - \Delta R$$

$$\Delta R = Wet + Dry + Iono + Sea + Set + Pol$$

同濟大學

TONGJI UNIVERSITY

		Cycle	Dale
Maximum	1119.6228	Jason-3 Cycle 009	2016-05-11
Minimum	1118.1717	Jason-2 Cycle 139	2012-04-15
Maximum Variation	1.4511		

Intra-annual change of water surface height

2. AREA EXTRACTION OF LAKE SURFACE

3. HEIGHT EXTRACTION OF LAKE SURFACE

4. ESTIMATION OF WATER VOLUME VARIATIONS

5. CONCLUSIONS AND FUTURE WORK

- 25 pairs of water area and WLALL with similar observation dates (interval ≤ 1d) were selected.
- 22 pairs were randomly selected for establishing the relationship model, and the rest 3
 pairs were used to evaluate the model accuracy.

WLALL
$$V = \int AdH = \int f(H)dH$$

$$A = f(H) = ae^{bH} + c = 2959e^{0.1918H} + 62850$$

	Date	MODIS-derived area /km ²	WLALL/m	Relationship- derived area /km ²	Absolute error /km ²	Relative error /%
1	2013/10/12	66141.75	0.4792	66093.85	47.90	0.07
2	2016/8/8	66656.25	1.0426	66464.02	192.23	0.29
3	2016/12/15	66404.25	0.7858	66290.33	113.92	0.17

$$V = \int f(H)dH = \frac{a}{b}e^{bH} + cH + d$$

= 15427.5287 $e^{0.1918H}$ + 62850H - 15427.5287

2. AREA EXTRACTION OF LAKE SURFACE

- 4. ESTIMATION OF WATER VOLUME VARIATIONS
- 5. CONCLUSIONS AND FUTURE WORKS

CONCLUSIONS AND FUTURE WORKS

Thank You!

