

ANALYSIS OF WAVEFORMS IN THE SATELLITE ALTIMETRY BY USING NEURAL NETWORKS

By Dennis Mattes

dennis-mattes@gmx.net

What is retracking and why is it important?

Receiving height information by using radar signals

Motivation

The satellite track covers water and land areas

Neural networks can:

- → Learn characterisic pattern
- → Detect the correct waveform
- → Do the retracking

The first question which occurs is: is the measurement over water or land?

How neural networks work Introduction

- First works about neural networks are published in the 1950s
- With the resources of big companies (e.g. Google, Baidu, Huawei, ...) they are now on a level that they can be used in our daily life
- Even human like interactions are now possible (e.g. Sophia from Hanson Robotics)

As a basic for this work and also for the presentation the book Make your own neural network from Tariq Rashid was used

Sophia at the Finastra University (Singapore)

Source: https://twitter.com/realsophiarobot

How neural networks work The basic idea

GIS

How neural networks work How to activate a neuron – Part 1

Source: https://commons.wikimedia.org/w/index.php?curid=4310325

How neural networks work How to activate a neuron – Part 2

With this:

- ➔ Small signals are suppressed
- → Strong signals are increased
- ➔ Range is between o and 1

Inputs i
$$x = \sum i \longrightarrow y(x) = \frac{1}{1 + e^{-x}}$$
 Output y

How neural networks work Combine the neurons

- Now we know how one artificial neuron works
- The next step is to combine them
- The human brain is also organized in different layers of neurons to propagate the signals to their destination

How neural networks work The learning process

- The question now is, how can a neural network learn?
- The answer is in the **connections** between the layer!

Each connection has a special weight which will be multiplied with the transmitted value

Example for node $N_{2,1}$: $x = i_{1,1} \cdot w_{1,1} + i_{2,1} \cdot w_{2,1}$

With these weights it is possible:

→ To strength a connection which provides useful informations

➔ To suppress a connection which provides less useful informations

How neural networks work Backpropagation

- The neural network adjust the **weights** of the connections during the training phase
- The weight adjustment depends on the **error** during the learning process:

Step 2: The learning error *e* is then calculated by:

$$e = y_{true} - y_{est}$$

Step 3: Now the error is distributed to the connections depending on their actual weight:

$$e_{1,1} = \frac{w_{1,1}}{w_{1,1} + w_{2,1}} \cdot e$$

How neural networks work What is the output?

Now we learned a lot about neural networks but what should be done to create such a result?

Output of our neural network:

Water = Label 1 Land = Label 2 The tested waveform is **water** with **99.66%**

Overview of the developed algorithm

The study area

Processing the data

 Because the sigmoid function is in a range between o and 1, the input data also has to be in that range > Waveforms have to be normalized

Source: https://commons.wikimedia.org/w/index. php?curid=4310325

That the neural network can learn the characteristics, the datasets have to be labelled:

Input for the first neural network

Analysing the first results The first neural network

- The network will label all waveforms in water and land
- The advantage is, that above the water area are very clear peaks

Label	Detection rate	
Water	100 %	
Land	20,07 %	

• The land area shows very different pattern which are difficult to detect for the network

Analysing the first results The second neural network

- The useful water waveforms are now detected
- To find the correct peak, we need more informations than only the label

How we can select the assumed water peak?

The output gives us the **probability** for each **label**

Analysing the first results The second neural network – Methodology 1

- 1. Create a window with the size of 23 bins which defines the input for the network
- 2. Save the label and probability from the output
- 3. Move the window 2 bins and repeat it

Analysing the first results The second neural network – Methodology 2

Analysing the first results Calculation of the water heights

water level [m]

Comparison of the calculated water level with the water level, measured by in situ stations

water level = $A - (R + \Delta R) + corr$ Water level (NN2) compared with in situ measurements 12 10 2 -2 05/2012 09/2013 02/2015 06/2016 Time Neural network

In situ data

A = Altitude of the satellite above the reference ellipsoid *R*= measured range ΔR = Retracked range *corr*= Applied corrections

Analysing the first results Calculation of the water heights

- Now we compare the water level with water levels, generated by the MLE₄ retracker: Water level (NN2) compared with in situ measurements Water level (MLE4) compared with in situ measurements level [m] water | -2 05/2012 09/2013 06/2016 -2 05/2012 02/2015 09/2013 02/2015 06/2016 Time Time Neural network -MLE4 In situ data -In situ data
 - As it can be seen, there is a delay in the peak maximum compared to the in situ data
 - Beside this problem, the main variations of the in situ water level can be reconstructed

Analysing the first results Calculation of the water heights

 At least, the residuals can be calculated to determine the standard deviation and the mean value from it:

 $res = waterLevel_{InSitu} - waterLevel_{Retracked}$

	Water level with 2. NN [m]	Water level with MLE4 [m]
Standard deviation of the residuals	1.2872	1.1886
Mean value of the residuals	0.9549	1.0420

• Reagrding this statistics the results are comparable with each other

Analysing the first results Summary

- There are good results by using a neural network for the classification of waveforms (first neural network)
- We have still several problems by using a neural network for the retracking but already good results (second neural network)

→ Neural networks show a big potential for further studies in this area

Future work

Until now, it is not possible to handle noisy datasets, where we have multipeaks close to each other:

Thank you very much for your attention!