=i L
w || l'l ll

F UNIVERSITE DU

kil UXEMBOURG

Second Workshop of DAAD Thematic Network
Modern Geodetic Space Techniques for Global Change Monitoring

Mass Balance Computation

in the Space Domain
Using GRACE Data

Jinyuan WANG, Wolfgang KELLER

27.07.2018



Gravimetric mass balance (GMB) is important for climatological applications
E.g. Recent contributions of glaciers and ice caps to sea level rise
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GMB of the Antarctic Ice Sheet on April 2002, unit: kg/m?, area: 2217-2642 km?

relative to a modelled reference value, defined to be the GRACE-derived mass as of 2009-01-01
Groh, A., & Horwath, M. (2016)
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GMB of the Antarctic Ice Sheet on July 2016, unit: kg/m?, area: 2217-2642 km?

relative to a modelled reference value, defined to be the GRACE-derived mass as of 2009-01-01
Groh, A., & Horwath, M. (2016)
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GMB Observation

e Gravimetry mass balance (GMB) cannot be directly observed from the space
* Only the change of Stokes coefficients can be observed

https://www.nasa.gov/mission_pages/Grace/multimedia/pia04236.html#.WyVIKEQV9gM
Introduction
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GMB Computation

How to compute the mass balance (MB) using the Stokes coefficients?

MB within an area B is the integral of the density change:
Amg = f Ao dA
B

The density change at a certain point can be derived from the change
of the Stokes coefficients, via spherical harmonics (wahr and Molenaar 1998):
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 Even if Ao can be given point-wisely, the value would be meaningless
e Applying the spatial averaging (integration) for Ac within an target
area is necessary

Introduction
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Examples of the global density change converted to the equivalent water height
* Noises, “stripes” can be seen
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Global EWH change on December 2016, non filter applied (unit: cm)
based on the monthly solution from CNES/GRGS, refence value: the mean between 2002 and 2013
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Examples of the global density change converted to the equivalent water height
e Spatial resolution of MB recoveried from GRACE is around 200 km
* MB cannot be a point measurement, but a spatial average (swenson & John 2002)
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Global EWH change on December 2016, Gaussian filter applied (unit: cm)

based on the monthly solution from CNES/GRGS, refence value: the mean be;chr‘%)%Uczt%%z and 2013
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GMB Computation

Traditional approach — a spectral/frequency-domain method

* Applying the spatial averaging kernel (Characterictic function of the area)
(Swenson & John 2002)
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e The integration of the Legendre functions is involved
* Using recursive formulas, known as Paul’s recursion (paul 1978), to compute y;,.

I, (t, t,) = j P, (t)dt, witht=sing
t1
Disadvantages:

* Longer mantissa for the computation == significantly lose efficiency
* Instability, especially in the latitude range of 40°N - 70°N and 40°S - 70°S

Introduction
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Alternative

Instead of compute the integration with a lot of recursions, can we make a
direct numerical evaluation of the integration?

e Newly proposed method: Space-domain approach using numerical
guadrature

Comparison between these two approaches

 Frequency domain

e Space domain

For the computation of .
e Integral of the Legendre functions (ILF): | P, (¢)dt

t1
e MB: jAadA
B

In term of

e Precision of the results

e Stability of the results
 Computational efficiency

Goal
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Reference Data Set

In order to evaluate the precision and determine the stability,
a reference data set is needed, it requires:

* Precision: same as the length of the “double-float” number
 No instabilities

However...
 For ILF, we do not have a complete reference data set elsewhere

 For MB, Stokes coefficients contribute error, different filtering and
data source lead to different result

Luckily...

 We can use sufficiently long mantissa (=108 significant digits for
[max = 100) to compute ILF in the spectral domain, the result is
accurate

e Using this ILF, we can compute MB and treat it as the true value

Spectral Domain
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Spectral Domain

How is MB computed in the spectral domain?

* The Stokes coefficients and the
characteristic function are multiplied
element-wisely

e For patches with the same latitude
range, the characteristic function
only needs to be computed once

Disadvantages:

e Computationally inefficient: each
patch has different characteristic
function

 Instability

27.07.2018

Spectral Domain
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Minimum precision of ILF computed with double float number

integrated every 5°, presented in the number of significant digits

Integral 0° 5°N | 10°N | 15°N | 20°N | 25°N | 30°N | 35°N | 40°N
Range 5°N ..... 1()°N ..... 1 5°|\| ..... 20°N ..... 25°N ..... 3()°N 35°N 40°N ..... 4 5°N
Precision | 10 10 10 11 10 11 8 7 4
Integral | 45°N | 50°N | 55°N | 60°N | 65°N | 70°N | 75°N | 80°N | 85°N
Range 50°N ..... 55°N 6()°|\| ..... 65°N ..... 70°N ..... 750N 80°N 85°N ..... 90°N
Precision 0 E E E E 7 8 11 11

Same condition in the Southern Hemisphere
Optimized recursion formula applyed near the Pole
E: (wrong values occur), indicates low precision and instabilities

within the latitude range from 40°N to 70°N, starts from the

integral of the tesseral harmonics

27.07.2018

Spectral Domain




Precision of some representative values of I;; (integrals of tesseral harmonics)
presented in the number of significant digits

* Instability starts from
the Middle latitude

Due to the property of

20 13 12 12 10 9 7 recursion — later
30 12 11 9 38 6 4 results depend on the
40 11 9 3 5 3 0 previous results, errors
from the integral of
>0 11 8 6 3 0 E tesseral harmonics
60 9 6 4 0 E E bring the instabilities
70 8 5 2 E E E to the final result
80 7 3 0 E E E
90 6 2 E E E E
100 5 0 E E E E

Spectral Domain
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Minimum mantissa required for the recursive algorithm
for the computation of ILF up to 100 degree, presented in the number of significant digits

Mantissa 15 19 24 30 38 47 60 77 108

e Shorter mantissa required at lower latitudes
e The number differs when:

= [ ..changes

= The integral range changes

When the mantissa is sufficiently long, would the results be perfect?

Spectral Domain
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latitude range: 0° - 5°N, longitude range: 2.5°W - 2.5°E

Spectral Domain
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latitude range: 10°S - 15°S, longitude range: 150°W - 145°W

27.07.2018

More waves
approaching the
Pole, indicating
the truncation
has stronger
influence

The exact
integration of
an approximate
characteristic
function does
not perform
perfectly

Spectral Domain
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Numerical Quadrature

Newton-Cotes Quadrature

Fry, %9, y2) & f j Fx,y) dxdy ~ ey Jey iy zvx, - Z v f,

yi "X 1 =0 Rafelski, (1984)

e The location of the
weights is evenly
distributed, “linear”

e The value of the weights
increases from the edge
to the center

* For ILF computation, it
estimates the integration
of the exact characteristic
function

The size of the red dots (or the brightness of the colorful patches) indicates:
* where the evaluation takes place
* how high the weight is

Space Domain
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Numerical Quadrature

Gaussian Quadrature

Jy
G(xl,xz,yl,yz)—j j g(x,y) dxdy = ky k wa, gx; zwy,-gy,-

j= j=0
Visualization of the weights distributed on an eqwangular patch

* The location of the weights is not evenly distributed, “nonlinear”
* The value of the weights also increases from the edge to the center
e But the distribution gets denser towards the edge

* Requires fewer evaluations than commonly used Newton-Cotes quadratures
Space Domain
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Comparison

Minimum possible number of points required for two numerical quadrature rules
ILF computation, for different latitude range with the size of 5°

In general, Gaussian quadrature requires less than half as many evaluations

Latitude Range | Bool’s Rule | Gaussian Quadrature

0° -20°N 57 8
20°N - 30°N 57 9
30°N - 40°N 61 9
40°N - 45°N 69 9
45°N - 70°N 85 9
70°N - 75°N 85 10
75°N - 80°N 117 12
80°N - 85°N 169 16
85°N - 90°N 341 20

as commonly used Newton-Cotes quadrature does

27.07.2018
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Comparison

Efficiency comparison of two numerical quadrature rules
for ILF computation from 90°S to 90°N

Number of Averaged
Name of the rule
Points (nodes) | Computational Time
Boole’s Rule 341 6.1x10s/IR
Gaussian Quadrature 20 4.3%x103s/IR

IR: Integral Range (with the size of 5° along the latitude)

* For space-domain approach, Gaussian quadrature has better performance
e Gaussian quadrature computes hundreds times as fast as Bool’s rule does

Space Domain
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Comparison

Efficiency for ILF computation among listed approaches

Approach

Spectral Domain

Sufficient Mantissa

Space Domain

Boole’s Rule

Space Domain

Gaussian quadrature

Averaged

Computational Time

1.7x10% s/IR

6.1x102 s/IR

4.3%1073 s/IR

Sufficient long Mantissa: 89 significant digits, for [ ., = 80

Efficiency for the global GMB computation
between the spectral-domain approach and the space-domain approach

Approach

Spectral Domain

Sufficient Mantissa

Space Domain

Gaussian quadrature

Averaged

Computational Time

42%101s/B

5.2x102s/B

B: An equiangular patch on the Earth’s surface with a size of 5°X5°

27.07.2018
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Reference
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Global GMB on December 2016, unit: Gt

computed in the spectral domain with sufficiently long mantissa (89 significant digits)
Summary
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Space Domain

No visible difference
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Global GMB on December 2016, unit: Gt

computed in the space domain using Gaussian quadrature (20 points)
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GMB Precision
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Average precision of the global GMB from April 2002 to July 2016

computed in the space domain using Gaussian quadrature (20 points)
presented in the number of significant digits

Summary
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GMB Precision

arr 20 11-12 (0.81%)

The goal is to reach 6 significant digits
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100% of the computed GMB reaches the goal, 46% (almost) identical to the reference

Worst case (less than 1%): losing 4 to 5 significant digits

27.07.2018
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Precision:
e Spectral domain: precise only using sufficiently long mantissa

e Space domain: as precise as the spectral-domain approach, by choosing an
appropriate number of evaluation points

Stability:
e Spectral domain: Instability happens when the mantissa is not sufficiently long

e Space domain: Stable

Efficiency:
e Spectral domain: Not efficient, incredibly slow

e Space domain: Very efficient; Gaussian quadrature is almost 1000 times
faster than the spectral-domain approach, and around 100
times faster than commonly used Newton-Cotes quadrature

Others:

 The evaluation of the integration along the longitude direction can be
optimized by analytic solution

Summary
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* Apply advanced numerical analysis, e.g. Romberg's method

e The algorithm can be further optimized: at different latitude,
the number of the evaluation point for the numerical
guadrature differs

Summary
27.07.2018
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Blood Moon

Thank you for the attention!
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